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I
ABSTRACTI

The plane metal sla', problem has been treated in a rigorous manner
for constant heat input and the 4th degree nonlinear radiation boundary
condition at the front surface and an insulated rear surface. This has been
possible by formulating the problem as a nonlinear Volterra integral
equation. An approximate solution has been constructed with appropriate
error bounds. This technique shows that the solution with the corresponding
linear boundary condition yields an accurate solution for a large number of
problems of practical interest. Numerical examples including rigorous
estimates of their validity are given for several cases. For the case where
this approach does not yield sufficiently accurate results, two alternate
approaches are suggested.
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Page I of 28

HEAT TRANSFER TO A METAL SLAB WITH
RADIATION BOUNDARY CONDITIONS

PURPOSE

The problem of constant heat input to a planar metal slab with the
4th degree nonlinear radiation boundary condition at the input surface and
an insulated rear wall is cons.idered herein. The purpose of this paper is
to develop an approximate solution from the rigorous formulation of the
problem and to demonstrate its range of validity with appropriate errorIbounds. This is accomplished by formulating the problem as a nonlinear
Volterra integral equation and working witt. the classical iterated
solutions. The properties of the solution are developed from both aIphysical and a mathematical approach.

INTRODUCTION

In this section the problem will be stated in the customary form of
a partial differential equation with boundary conditions; then physical
arguments for the behavior of the solution will be presented. The
arguments concerning the behavior are confirmed in Appendix II, where
the same conclusions are drawn from the integral equation formulation
of the problem. The integral equation formulation of the solution, which
has the advantages of including the boundary conditions directly, is
presented. It is based on the derivation in Appendix I. The technique
for solving the integral equation is shown and the basic approximations
are given.

The geometry and coordinate system of the problem are depicted
in Fig. 1. The differential equation and boundary conditions are given
in Eq. (1).

(1) U >U 0; > 0,O< 4< 1I
)U(O,T) Qok + X U4 (,T

6t k
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U(1,'r) =

U(FOO) = U(0,0)

whe re =o qo + o - U4 (0,O0)

Kt z

k

qo is the heat input

rz is the emnissivity

a is the Stephans -Boltzman constant

t is time.

Metal Slab

kK nsulating Wall

Input Surface

Fig. 1. Geometry of metal problem, where k in
the thermal conductivity and K the diffusivity.
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In order to determine the behavior of the temperature when subject to the
nonlinear boundary condition, the boundary ,-ondition at the front surface is
examined in detail. In Eq. (2) the boundary condition is presented in a
rewritten form:

) U(0,T) + [0,T)U
4 (O',0)]

T where the term X [U4 (0 , T)-U 4 (0,0)] represents the heat loss due to radiation.
AIf the nonlinear term , U4 (0, T) were not present, one would expect, since the

input is contant, that the temperature would increase monotonically with
increasing T and become unbounded as T-0oo. However, with the nonlinear
term present, as the temperature increases the heat input decreases due to
the radiation losses, and the input term thus decreases. Hence, as before,
the temperature would be expected to rise monotonically but with decreasing
slope as T is increased, and finally as T-+ 00 the input term on the right of
Eq. (2) would approach zero. At this point there would be no net heat transfer;
that is, the quantity of energy supplied to the slab would equal the quantity of
energy lost through radiation. Thus an equilibrium temperature would be
reached. This temperature will be denoted by ue and is obtained by equating
the right side of Eq. (2) to zero:

(3) ue [ Q o /E cT]/4

Furthermore, it is expected that for # 0 U(E, T ) will rise monotonically from
U(0, 0), the initial temperature (which is assumed to be less than ue), and will
approach ue as T-4oo. The temperature in the interior (0 < g< 1) will be less
than the surface temperature.

Since none of the standard techniques for partial differential equations
seem applicable to the solution of Eq. (1), an attempt is made to formulate
Eq. (1) as an integral equation. This was begun by postulating a solution of
the form 1 0
(4) U(,'r T Uo(,Tr)-X.F f O(Q, '' T#') U'( T/)

where G(, T I 4,T') is determined by the condition that U(' T) must satisfy

Eq. (1) and the boundary conditions. The term, Uo(f, T ), is a solution to
Eq. (1) with the nonlinear boundary c-ondition at 410 replaced by a linear
boundary condition, which can be handled by standard. techniques. The

boundary condition chosen was that which corresponded to the same problem
but with radiation neglected, namely,

)k

1107-5 3



The solution for Uo(g,' ) is well known, 1 and is given by

(6) Uo(t,')=U(O,o)+ Q ' [+ { + - g .L )
k 3 2"

2__ Z n' -n 1I

72 (ncos nir e ] T

n=l

The function G(t, T ) was determined and details of the derivation
are given in Appendix I.

(7) U(t,T) Uo(t, )-f +z (cosnwe n V2 U(T-T' 4.

'r=0 n-.

In the integrand of Eq. (7) only the surface temperature is unknown,
thus if the surface temperature can be determined, then the tempera-
ture fields throughout the slab can be determined. An integral equation
in the surface temperature is now obtained from Eq. (7) by setting

0. The resulting expression is given by,

T

(8) u(T)=Uo(T ) - X f g(T - T') u4 ( ' ')

T 0

where u(T ) = U(O,r )

U(T ) = Uo(O,T 0)

g(T -r') =1 + z e n 2 T T- > 0

=0 =1

Before proceeding further, the relation between UO(T ) and g(T --r) will
be given in order that Eq. (8) may be recast in i, more illuminating
form. First uo(T ) is written in the form

1107-5 4



S( )Uo(-r ) = Uo(0) + 00 1 o(-)
Q01(9)k 0o

where 4(T) = T + - n'- n

n=l

and although g(T -T) is not bound, it is integrable and an integration
shows

(10) ,(-r) g(T --r)
1"v =0

Using this relation, Eq. (8) is now recast in the form

(11) u(r) = uo() + X g(i-_r ) [u 4 - u'(T')]
I =0

where ue is given by Eq. (3). The details of this derivation are
given in Appendix 1. The properties of u(T ) are derived in Appendix
II, and the conclusions of this work show that for uo(0) < ue ,

(12) u(T ) is monotone increasing

uo(O) < u(-) < ue

U(T" I Ue  .

These properties are shown pictorially in Fig. 2.

Equation (11) is solved by an iterative technique given by

(13a) u, ( ) = uo(0) + % glr -T') [Ue  - u (0)]

T =0I T

(13b) un(r) = uo(0) + X g(T -T') [ue4 - u 4
1 (r')]

I T n0
1T =0n-

11I07-5 5



U 6 -

u(r)
U0(O),

'S I
T

Fig. 2. Pictorial representation of U(T)j the surface I
temperature at t = 0, the input surface.

where it can be shown un( ) --- u(T) under suitable restrictions. These
are discussed briefly in Appendix III, but the chief concern in this report

is ul (T) since it can be obtained explicitly and because of its relationshipI
tu uo(T). The computation of Un(T ) for n> 2 cannot be carried out
explicitly, and numerical methods must be employed.

However, as suggested, u1 (T) is expressable rather simply,
since ue 4 - U0

4 (0) is a constant. This can be seen from Eq. (10).
Hence, it is found that ul (-) is given by the expression I

(4) u1 (T ) = %U( 0) + [U e4 - u0 '(0)] 4o(r ) .I

The expression for ul (-r) may also be written in the form I
(since X 4 = Q0 1/k) I
(15) u 1(T) = U( ) - u 04 10) X o(T

where u0 (T) is given by Eq. (9) and is the solution to Eq. (1) with the
nonlinear boundary condition omitted an described by Eq. (5). From

Eq. (14) it is seen that ui (T) is monotone increasing and unbounded as I
T -00; thus it will not be a useful approximation for all T. However,
for T small (the precise meaning will be apparent later), %u (T) will be

a useful approximation. In Appendix U. it is shown that ul (r) satisfies
the following inequalities:

1107-5 6 1
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._(16) 0 < ul (,r) u(-r)< u0[ o(T-r U4 (0)] 0(-r)
1[

In terms of uo(r ), the solution with radiation neglected, this inequality
reads, where u 1 (T) as given in Eq. (15) has been used.

(17) X u4 (0) P (T)<Uo(,) -<u(T) X[%*4()] U o,)

The inequality in Eq. (17) indicates how close uo(T) is to u(T ) and will
be illustrated for several examples in the next section. Thus the
inequalities in Eqs. (16) and (17) define the range of -r for which the
approximation is accurate, and the degree of accuracy. Numerical
techniques for evaluating io(4r) and thus uo4( ) are given in Appendix
IV. Also as a result of Eq. (17) it is seen that by a slight rearrange-
ment one obtains an upper and lower bound on u(T), the exact solution.
Explicitly this is given by the expression

(18) uo() - X u 4 (T) ,o(r ) < u(')< Uo) - u0 4(0) 4o(r)

These upper and lower bounds on u(Tr) are shown graphically for
several examples in the next section. In the examples considered
there the quantity X u 0

4 (0) (r) on the right of Eq. (18) was quite
small and hence was neglected. Note that uo(T ) is still an upper
bound on u(T ) when X uo 4 (0) 4T( ) is replaced by zero.

NUMERICAL RESULTS AND EXAMPLES

In this section numerical results are given for a 1/2-inch copper
slab and a 1/2-inch stainless steel slab. The results concerning the
accuracy of u (T) as an approximation to u(T) are summarized in
Table I when u(T ) is near the melting temperature of the slab. The
errors given in the table are the largest, since the approximation
improves as T decreases. Also it is felt that there is no need to study
the solution u(T) when u(T ) exceeds the melting temperature of the
slab, for surely the assumptions that the thermal parameters are
independent of temperature are no longer valid in this temperature
range. The thermal parameters and other data relating to the two
slabs are given in Table II.

1107-5 7



TABLE I

1/2-inch Copper Slab 1/2 -inch Stainless Steel Slab
Melting Temperature 1325 K Melting Temperature 18000K

Max. Max. Percent Max. Max. Percent
Error Error Error Error

0.03 0.02"K < 0. 001% 0.03 100 K 0.6%
1.0 1 75 K < 3.8% 0.1 310 'K 2%

1.0 310-K 21%

Table I describes the accuracy of the approximate solution near
the melting point of the slab.

TABLE II

I = 1.27 • 102 meter s  Uo(0) = 3000 K

Parameter Copper Slab Stainless Steel Slab

watts
k meter(K) 389 14

( m e t e r ) z  1.14 10- 4  3.87 • 10- 6

( K) (sec)

watts 2.8. 10' 2.8 " 10
Qo (meter)z

"0.03 1.0 0.03 0.1 1.0

X (OK) -3 5.62" 10 "'4 1. 54 .10 'z 1. 56' 10 "'z 5. 21" 10" 5.21- 10-11

u e(K) 6500 2840 6350 4700 2640

Tablefl gives the parameters associated with the two klabs.

1107-5 8



In Figs. 3 and 4 the results for the copper slab are given, but only for
the case c = 1. 0. The results for r = 0. 03 are very good, as can be
seen in Table 1, and no attempt is made to graph them. The worst
error is only 0. 02 0K and occurs when uo(T),l13Z5 0 K. The results for
the stainless steel slab are given in Figs. 5,6, and 7. The worst error

occurs again for c = 1. 0.

1500 1
Melting Point Of Copper

1 1300/I ,uoo) / -_-

110000

I '900 /

00

I 700

1 500

0 8 12 16

t (Seconds)

Fig. 3. Figure 3 shows uo(T) for the 1/2-inch copper slab. For f 1. 0
the exact solution, u(T) lies above the dashed line and below uO(T).
For e = 0. 03 the dashed and solid curves are too close to depict

I separately.

I 1107-5 9



so

14 o0_ Uo(T)-u(r):5 u(cr) %CT)
0

60

*0

1.0<

20

0 4 8 12 16
t (Seconds)

Fig. 4. Figure 4 shows the error for the 1/2-inch copper slab when
e = 1.0. This is the worst case; that is, for all other parameters

fixed, as e increases the approximation becomes less accurate.

Three suggestions for improving these results will now be given.
Two of the techniques will depend on a numerical integration and the
third on solving a linear problem which is closer to the actual physical
problem.

In deducing the upper bounds given in Eqs. (16), (17) and (18)
relatively crude techniques were used, for example, since 0 (r ) is
monotone increasing, the rather crude result follows

T" T

1" =g(.-"T*O(tr/) *O(. )=0g( -'')

r =0 1 0

1107-5 10



1

2200

Melting Point Of

1800 Stainless Steel /

1400 0 ____=,.
.,.' 1.0

//
1000

600

2001
0 4 8 12 16

t (Seconds)

Fig. 5. Figure 5 shows Uo(T) for the 1/2-inch stainless steel slab. For
= 0. 1 the exact solution lies between Uo(T) and the dashed curve

labeled o = 0. 1. For C = 1. 0 the exact solution lies between Uo(T)

and the dashed curve labeled F = 1. 0. For e = 0. 03 the dashed
curve is too close to uo(T) to depict seperately on this graph.

Hence, it is quite possible that the large discrepancy indicated for the stain-
less steel example is an unnecessarily harsh evaluation. Therefore, the
first approach would be to integrate numerically the right hand side of the
inequality given in Eq. (19) below.

T

(19) 0< u1(T)-u( )<_)f g(T -T')[U'(T') - U 4(0)]

T =0

This result is deduced from Eq. (2-6b) and the fact that u(T) < Uo(T )

I
1107- 5 11



60 1 1I0o5 UoMU(T) S < O(T *O /

40

20

.( / @0.03

0L
0 4 8 12 16

t (Seconds)

Fig. 6. Figure 6 shows the error for the 1/2-inch stainless steel slab for
= 0. 03 and e 0. 1. The error for c = 1.0 is obtained by multiplying

the ordinate by the factor 10. Thus again it is seen that as e increases,
so does the error.

If this approach fails to give the desired accuracy, the next step would
be to compute several of the iterated solutions Un(T) for n > 2 and, in this
exaiiple, for 0 < t < 4 seconds. This solution for 0 < t < 4 seconds is used
to continue the solution for t > 4 seconds. This is accomplished hy rewriting
Eq. (8) as follows

T (t=4 sec) T
U(T) = Uo(T)- ;g (,-r-') U4(T) g (T -T)U4 (r

T =0'=T (t=4 sec)

The first two terms on the right hand side of the equality are known.
Considering these two terms as the initial approximation the temperature
for t > 4 seconds can now be computed by iteration. However, since this
approach depends quite heavily on numerical integration the resultant errors
from the integration may make this approach prohibitive.

1107-5 12,



I
0

0
IiO

4-o 20

E

0

0 6
0 4 8 12 16

t (Seconds)

Fig. 7. Figure 7 shows the rnaxirnurn percent error
for the 1/2-inch stainless steel slab when

= 1.0., the worst case.

The third approach, as mentioned earlier, consists of solving a linear
problem which is closer to the physical problem and evaluating its accuracy
by the techniques presented here. The first step is to expand the right hand
side of Eq. (2) in a power series about U(0, 0). This is given by

(20) 6U (0,T= - - + 4XU3(0,0)[U-U(0,O)] +X H(U)
69 k

where H(U) = 6 U (0,0) [U- U(O,0)] + 4U(0,0)[U-U(0,0)]+[U-U(o,0)J 4 .

It is seen that the right hand side of Eq. (20) involves terms which are linear
in U and terms which are nonlinear in U. The nonlinear terms are grouped
in the factor H(U). it is possible to obtain a useful solution to Eq. (1) when
the nonlinear terms are neglected. This solution has two advan'ages over
linear solution which has been used in the examples considered here.

1107-5 13

I



(1) it takes into account some radiation loss for T Small
while the previous did not.

(2) this solution will be bounded as T-00, while the
previous was not.

Also, the nonlinear term may be expanded in a power series about the
equilibrium temperature. This will yield an approximate solution which
will be useful for T large.

No numerical results based on this approach are available but of the
three methods suggested here this appears to be the most promising.

CONCLUSIONS

The metal slab problem with the nonlinear boundary conditions has
been formulated as a nonlinear Volterra integral equation. A simple approxi-
mate solution has been found which is shown to be quite adequate for several
cases of practical interest. Error bounds indicating the validity of the
approximation have been given. Techniques have been suggested for
handling the case when the error becomes too large.

Since it has been possible to determine the equilibrium temperature
by examining the integral equation satisfied by the surface temperature,
the possibility exists that the equilibrium temperature for more complex
shapes can be determined by a similar procedure.

1107-5 14
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APPENDIX I

In this section an argument is given for reformulation Eq. (1) as an
integral equation. A similar argument based on Green's second theorem
can be given. The equations to which a solution is sought are restated in
Eq. (AI-la) to Eq. (Al-ld).

- a U u
(AI-la) ---- =0, T > 0 , 0< 4< 1

(AI-Ib)-- U (0, T) 90- + +X U4 (Of T ) f

k

(AI-lc) 6)U (1,T) =0

(Al-i-

(AI-Id) U(e 0) = U(0,0)

where the symbols are defined in Eq. (1). An attempt is made to seek an
integral equation formulation of the problem by asking for a representation
of U(Q T) in the form

00 1

,- 0 '=O

where Uo(Q T) satisfies Eq. (AI-i) with X = 0, and G(F. r "' T/) is
determined by the requirement that U(F, Tr) satisfy Eqs. (AI-i). The
solution for U0 ( , T) is well known I and is given in Eq. (6).

GITTh requirement that U(Q T) satisfy Eq. (AI-la) requires thatG(foT 14',T7) satisfy

i(f. T I g'.,' L Q. Tg') -- 0

T > 0 O<C< 1

, i>0 0< '<

1107-5 15



Notice that Uo( t r) satisfies Eq. (Al-ia). Saving the boundary condition in
Eq. (AI-ib) until last, the boundary condition in Eq. (Al-ic) is considered
next. First note that

aUo (1,r) O

and hence, in order that U(Q r) satisfy Eq. (AI-ic), it is required that

Turning next to the initial condition in Eq. (Al-id), the following

conclusions are drawn. Since

Uo(,o) = U(0,0)

it is required that

Now attention is turned to the nonlinear boundary condition expressed in
Eq. (AI-lb). Next, it is noted that

alUo (0, "r ) , -. 0.-

at k

Hence, it is seen that if G(t" JTTI" ) satisfies

- (O, T ~')= 6('r ~-'r'),

where 5(x) is the Dirac delta function, then U(, T) satisfies the boundary

condition at the input surface. Here use has been made of the fact that

00 1

U 4 (Or) = f5(') 6(r-r' U 4 (4', T')

1107-5 16
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I
In summary, then, it is seen that G(f. T -r, " ) satisfies the following

I system of equations:

(AI-3) G -6 = 0 0< g< 1, 0< T

/ /T

6__G (1, T" ' ) 0 , > 0

G;(FO / 0 / =0, 0<6<1,

for 0< < 0 <T /

The solution to this system (Eq. (AI-3)) is quite similar to that for Uo(F T),
as can be seen by comparison. The solution for O(,-r It T') is given by

(AI-4) G(O T It",T') = 6({') + 1 [COS niW]e
n=l

where S(T-r') = 0, T-T < 0

= l, T-T > 0

The formal solution for G(t, T I6, -r) was obtained by the Laplace Transform
techniques. Substituting this expression (Eq. (AI-4)) into Eq. (AI-2) and
carrying out the integration with respect to ', one obtains the result in
Eq. (7) of Section B, namely,

(AI- 5) U(t, )-Uo(F r )k.f [1+Z (cos nr 6) n '  (T --r  U4 (0,7T)

I" =0 n=l

g( - +) = 21 0 cos ni e-n l (T ) >0

n=l

0 "r-' < 0

1107-5 17



It has not been possible to show in a rigorous fashion that U(f, ) is
determined by Eq. (AI-5); however, the argument appears reasonable,
and as will be seen in the next section, the temperature, U(O T ),has

all of the expected physical properties.

1107-5 18
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APPENDIX II

IIn this section the properties of u(T ), the surface temperature, are
established. These properties are deduced by assuming that u(,r) is
bounded and integrable and uo(O)< ue . The case uo(O) = u. has the trivial
solution u(r) = u e and the case uo(O) > ue is of no interest physically,
although it can be handled in the same manner as the present case.

I From Eq. (AI-5) in Appendix I. by setting = 0 one obtains the
following expression:

(All-i) U(T) UO( ) - g(T-T') U4 (T" )

where u(r) U(O,T)

I u('r) Uo(O,T)

g("T 1 ) = 1 +2 - n I T(( - T /) , T-T/> 0

n=l

=0 T-T < 0

Note that Eq. (AII-i) implies that Ur) > u(-r), r > 0. Elementary
theorems& show that g(7- r') is sumznable and that

T

(AII-2) to( ) =f g(T-T')
Tr/=O

With this information and the relation between o(T ) and Uo() one
I deduces the integral equation given in Eq. (11),

I (AII-3) U(T) =Uo(O) +XJI g (r-T')[Ue'- U4 (7r)]

T / =0

where u .4 QO Q01
1 Xk

1107-5 19



Several elementary observations are now made.

u(0) = Us(0),

and there exists a T* such that U(T) is continuous for 0< T < '". Since
u(tr) is continuous for T < 'r * and u(0) = us(0) < u., it follows that u(tr) < ue
for some interval to the right of T = 0. Thus, it also follows, since the
integrand in Eq. (AII-3) is positive, that u(tr) is monotone increasing in the
same interval that for which u(T) < ue. Thus it has been established that

u(t) is monotone increasing T < To

where u(t o) = Ue

It will now be established that T o is not finite. For r > To'
examination of Eq. (AII-3) shows that

To

(AII-4) u(T) = uo(0) + g(T -T,' )[u 4 - 4 (7')

T -: 0
T

+Xf g(t--') [ue u4 (T')]

TI

0

Since T > T o, it follows that g(t 0 -T') > g(t -T"). Hence, since u(tI) < u e

for T'< T o ,

T

(AII-5) u(T) ' ue + g(T -r' )[u 4 - u 4 (T')], T > T

TT0

But it is assumed that u4(T') > u for -'> To, which implies u(t) < ue
this contradicts the assumption that U(T) equals u e for finite T . Thus U(T )

is a monotone increasing function for T > 0, bounded below by us(0) and
above by ue, and further

-(T ) 0 u e

These are precisely the results based on physical reasoning.

1107-5 20



Next the bounds on the difference, u, (T) - u(T), will be derived.
From Eq. (AIn- 3) and the expression for u1 (T) given in Eq. (AII-6a), the
following results are deduced:

T

(AII-6a) U, (T) = U(0) +Xf g(T -TI) [u 4 - u 4()]

T I =0

Hence, it is seen that (since u(Tr) > Uo (0))

T

(AII-6b) 0 < u, (T) - u(Tr) g(T -T ) [u 4 '(T') - u (0)]

T =0

From the fact that u4() is monotone increasing, and bounded by the
monotone increasing function uo4 (T), it follows that

(An-7) 0 < u (T) - u('r): X [U 4 (-r) - u4 (0)] o(T ),

This is the result stated in Eq. (16). Thus the properties of u( ) as well
as the relationship between u(T), ul (r) and u 0 (T) have been deduced.
Some of the properties of un(T ) for n > 2 are deduced in Appendix I,
although they are not of particular interest as far as this report is
concerned.

L

I
I
I

U107-5 21



APPENDIX II

As pointed out previously, since ul (T) is unbounded as T-400, it
surely will not offer a good approximation to u('r) for all T. This is also
illustrated in an example in Section 2. It is therefore the purpose of this
section to show how the iterated solutions, un('r), n > 2, can be used to
improve the approximation. In this section it will be shown that for Tr
less than a certain * o, the convergence of un( ) to u(T) is guaranteed.
For T larger than this value another method is suggested. Let T, be
defined as follows:

(AIII-) u1 (1T) = ue

The next. iterated solution ua( .) is given by (as defined by Eq. (13b))
1-

u (1) = u(0) +X g(Tr-Tr') [u - u 4 (T')]

Tin 0

Then for T < T1 ,

uo(O) < u3 (r) and is monotone increasing.

Further, for T < Tj

U2 (r) <U 1 (i) and

Uo(O) < uZ(T) < u(T)< u, (T)

with the equality signs holding for T = 0 only. To show that u(T) > uZ (T),
consider the difference

1

u(') " U2 (T) " g(T-'r) [ u ' ( T") - u4 (T')]

=-0
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Since u, (T)> u(,), T < TI the result follows. In a similar manner one
can show

u(T)< u ()< u,(T), T <T,

In general one has the following scheme with each un(T) a monotone
increasing function of T for T< T.

I I jjI I I
uo(O) uz(T) u4 (T) u6(T) u(T) u7 (T) u5(T) u 3 (T) Ul (T)

Fig. IMI-1.

In this figure a pictorial representation of the type of convergence is shown.
The question to ask is, for what range of T does the sequence FU(T )-un(T) I
converge? This sequence can be shown to converge for all T which satisfy

(AIII-2) 4X o(T) u1
3 (T ) < 1

Denote the largest least upper bound of the T s which satisfy Eq. (AIII-2)
by TZ ; then for

(AM-3) T < min [T, T 2 ] the sequence Un(T)-.--.U(T )

For T > T o where To < min IT , TZ ], another technique must be sought.
Let T 0 be a value for which an accurate iterated solution has been found.
Rewrite the integral equation for u(T) as follows:

T o  T

UT U( +x T T)[,-u(r) +X T -T")[ _U(T

for T>T o

Note that the term

I
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To
u°(0) + -g(T .. ri)[Ue4"U4(Tr/) ]

is known, and hence for r > T one is faced with solving the integral
equation

T

u(r) -f(r ) + If g(T -T')[U4-u 4 (.r)]
T I =T

O0

It is now hoped that this equation can be iterated to obtain approximate
solutions for T > -r . However, this matter will not be pursued further
here.

1I
I
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APPENDIX IV

In this section some information concerning the calculation of 0 (T)
- ~ is given. This function is given by o

1 ne - n IT"T
""(AIV-I) (-r T + 1 " T- n -2e-n i T

n=l

and due to the exponential terms in the series one expects good convergence
for T large. This is indeed the case as the following tables indicate.
However, for T small the convergence is slow and another form for the
expression of i (T) is sought. This expression and a resulting simple
approximating Rinction is found by noting that g(r -T) is aTheta function.
Relationships between theTheta functions yield the desired relationship. 3

(AIV-2) g(-r--rl =93 (0, jiwr(-rl-r))

I 03(01
7F (TI -T'" W , (T -T,

where 0 3 (0, lix) = Go

I+ZY e-na" x

n=l

The following results were then deduced, and are given in Tables III, IV,
and V. Table III gives the general results, Table IV gives results when
accuracy to five places is needed, and Table V gives results only when
three-place accuracy is needed.

1
I
!
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TABLE III

Various approximate expressions for 4i0 (Y and bounds
denoting how close the bounds are.

0 4 (9)2

R 5.75 10T6n

3

0 8 l e 1T 1r

3 +

R - 5~~.7 0 -17

33

R =.131 e-4y' a

0< T + I - _O(

3
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TABLE IV

Gives approximate expressions for o(T)

accurate to five significant figures.

Range Of Approximate Expression io(T)Rangeof TFive significant figures

.0 < o(T) = Z0<1<01m

1 2 (e.l. 1 -4ir' 1 a -9Tr.1 < T- <.15 o(-r = -r + -- ( +
3 wa 49

1 2 .7.Z + 1 w4Ir.15 < T < . 30 °(r = - -3 " (a "4

1 2ira2.30 <'r < 1.25 o ('r) ='y +_1 .- (e
-- -- 3 wZ

1
1. 25< r (r = T + 1

-- 3

TABLE V

Gives approximate expressions for o O(r)
accurate to three significant figures.

Range of -rApproximate Expression '('r)
Range___o __ Three significant figures

0< r < .1 o( )= Zf

I< 'r < .2 O(T ) = (T+ -,2-(e7a +L e- 47 )

1 2 aWS.< T < .7 = (7 +)) = ( (e + ; e

II 7 < o7
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